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many slides from Alyosha Efros, Phillip Isola, Richard Zhang, James Hays, and 

Andrea Vedaldi, Jitendra Malik.
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HW1 (hints)
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Template matching

• Goal: find       in image

• Main challenge: What is a 
good similarity or distance 
measure between two 
patches?

• Correlation

• Zero-mean correlation

• Sum Square Difference

• Normalized Cross Correlation
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• Goal: find       in image

• Method 0: filter the image with eye patch

Matching with filters

Input Filtered Image

],[],[],[
,

lnkmflkgnmh
lk

++=

What went wrong?

f = image

g = filter
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• Goal: find       in image

• Method 1: filter the image with zero-mean eye

Input Filtered Image (scaled) Thresholded Image

True detections

False 

detections

mean of g

Matching with filters

f = image

g = filter
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Input 1- sqrt(SSD) Thresholded Image
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True detections

• Goal: find       in image

• Method 2: SSD (Sum Square Difference)

Matching with filters

f = image

g = filter
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Matching with filters

• Can SSD be implemented with linear filters?
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g = filter
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Input 1- sqrt(SSD)
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What’s the potential 

downside of SSD?

Matching with filters

• Goal: find       in image

• Method 2: SSD (Sum Square Difference)

f = image

g = filter
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Matching with filters

• Goal: find       in image

• Method 2: Normalized Cross-Correlation
f = image

g = filter
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Input Normalized X-Correlation Thresholded Image

True detections

Matching with filters

• Goal: find       in image

• Method 2: Normalized Cross-Correlation
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Input Normalized X-Correlation Thresholded Image

True detections

Matching with filters

• Goal: find       in image

• Method 2: Normalized Cross-Correlation
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Q: What is the best method to use?

• Answer: Depends

• Zero-mean filter: fastest but not a great matcher

• SSD: next fastest, sensitive to overall intensity

• Normalized cross-correlation: slowest, invariant 
to local average intensity and contrast

Side by Derek Hoiem12



Review 

(CNN for Image Synthesis)
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Can Deep Learning Help Graphics?

Cat
Modeling Texturing Lighting Rendering
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CatDeep Net

Cat
Modeling Texturing Lighting Rendering

Can Deep Learning Help Graphics?
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Generating images is hard!

8 Deep Net

Cat
Modeling Texturing Lighting Rendering

28x28 pixels
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Better Architectures
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Fractionally-strided Convolution

18 © David Dau

Fractiaionally-strided convRegular conv (no padding)



Better Loss Functions
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Input Output Ground truth

Simple L2 regression doesn’t work 
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Input x

What is a good objective ℒ?

- Capture realism

- Calculate image distance

- Adapt to new tasks/data.

Problem Statement

Generator 𝐺

Learnable rendering

Loss functions for Image Synthesis

Output Image G(𝑥)

Input Output imageGenerator

Loss function



Designing Loss Functions

L2 regression

x

Input

G(x)

Predicted output

G

Generator

−| |
GT output

y



Image colorization

L2 regression

Super-resolution

L2 regression

Designing Loss Functions

Slide credit: Phillip Isola



Image colorization

Super-resolution

Designing Loss Functions

[Zhang et al. 2016]

[Gatys et al., 2016], [Johnson et al. 2016]

[Dosovitskiy and Brox. 2016]

Classification Loss: 

Cross entropy objective, 

with colorfulness term

Feature/Perceptual loss

Deep feature matching 

objective

Slide credit: Phillip Isola



Gatys et al. In CVPR, 2016.

Johnson et al. In ECCV, 2016. 

Dosovitskiy and Brox. In NIPS, 2016.

Chen and Koltun. In ICCV, 2017.

“Perceptual Loss”



CNNs as a Perceptual Metric

𝐹 𝐹

Normalize, 

Subtract

L2 norm,

Spatial average

𝐺(𝑥) 𝑦

Avg

𝑑0

(1) How well do “perceptual losses” describe perception?

(2) Does it have to be the VGG network pre-trained on classification?

c.f.  Gatys et al. CVPR 2016. Johnson et al. ECCV 2016. Dosovitskiy and Brox. NIPS 2016.

Slide credit: Richard Zhang



Perceptual Loss

x

Input

G(x)

Predicted output

G

Generator

) − F(|F( )|
GT output

y

CNNs as a Perceptual Metric

F is a deep network (e.g., ImageNet classifier)

weight

The number of elements in the (i)-th layer

(i)-th layer



What has a CNN Learned?

Zeiler and Fergus. In ECCV, 2014.



CNNs as a Perceptual Metric

𝐹 𝐹

Normalize, 

Subtract

L2 norm,

Spatial average

𝐺(𝑥) 𝑦

Avg

𝑑0

Perceptual Loss
weight

The number of elements in the (i)-th layer

(i)-th layer

Slide credit: Richard Zhang



Zhang, Isola, Efros, Shechtman, Wang. 

The Unreasonable Effectiveness of Deep Features as a Perceptual Metric. In CVPR, 2018.

D ( ),

How Different are these Patches?

Slide credit: Richard Zhang



Which patch is more similar to the middle?

Humans

L2/PSNR

SSIM/FSIMc

Deep Networks?

< Type 2 >< Type 1 >

Slide credit: Richard Zhang



% agreement with

human judges

Bigger/Deeper ≠ Better 

Networks perform strongly across 

supervisory signals and 

architectures

Fitting some data

is important

82.6

68.9

Low-level

AlexNet (Random)

AlexNet (Unsupervised)

AlexNet (Self-supervised)

Nets (Supervised -

Imagenet classification)

Human

75.7

76.8

78.0

74.8

70.6
70.069.7

VGG (“perceptual loss”) 

correlates well

Slide credit: Richard Zhang



Gatys et al. In CVPR, 2016.

Johnson et al. In ECCV, 2016. 

Dosovitskiy and Brox. In NIPS, 2016.

Chen and Koltun. In ICCV, 2017.

“Perceptual Loss”



Universal loss?

… …

Generated images

34



… …

Human Annotation

Generated images

…
Real photos

[Zhu et al. 2014]

Real vs. Fake

Learning with Human Perception
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…

Classifier

[Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-

Farley, Ozair, Courville, Bengio 2014]

Generative Adversarial Network
 (GANs)

Real photos
…

…

Generated images

Real vs. Fake
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Image synthesis from “noise”

Generator
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Image synthesis from “noise”

Generator
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Image synthesis from “noise”

Generator
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© aleju/cat-generator

G(z)

G

fake image

[Goodfellow et al. 2014]

z

Random code
Generator
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A two-player game:

• 𝐺 tries to generate fake images that can fool 𝐷.
• 𝐷 tries to detect fake images.

[Goodfellow et al. 2014]

G(z)

G

z

Random code
Generator

D

Discriminatorfake image

Real (1) or

fake (0)?
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fake (0.1)

G(z)

G

z

Random code
Generator

D

Discriminatorfake image

[Goodfellow et al. 2014]

Learning objective (GANs)
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x

D real (0.9)

[Goodfellow et al. 2014]

fake (0.1)

G(z)

G

z

Random code
Generator

D

Discriminatorfake image

real image

Learning objective (GANs)
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x

D real (0.9)

fake (0.3)

[Goodfellow et al. 2014]

G(z)

G

z

Generator

D

Discriminatorfake image
Random code

real image

Learning objective (GANs)
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• From the discriminator D’s perspective: 

• binary classification: real vs. fake. 

• Nothing special: similar to 1 vs. 7 or cat vs. dog 

GANs Training Breakdown

45



• From the discriminator D’s perspective: 

• binary classification: real vs. fake. 

• Nothing special: similar to 1 vs. 7 or cat vs. dog 

• From the generator G’s perspective: 

• Optimizing a loss that depends on a classifier D

• We have done it before (Perceptual Loss)

GANs Training Breakdown

GAN loss for G Perceptual Loss for G
46



• Training: iterate between training D and G with backprop.

• Global optimum when G reproduces data distribution.

G tries to synthesize fake images that fool D

D tries to identify the fakes

real or fake?

[Goodfellow et al., 2014]

G(z)

G

z

Generator

D

Discriminator

GANs Training Breakdown
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Proof

is the unique global minimizer of the GAN objective.

KLD (Kullback–Leibler divergence): 

JSD (Jensen–Shannon divergence):

Optimal discriminator given fixed G
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What has driven GAN progress?
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What has driven GAN progress?
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Samples from StyleGAN2 [Karras et al., CVPR 2020]



GANs evaluation (FID)
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Fréchet Inception Distance (FID)



GANs evaluation (FID)

pip install clean-fid

Daily downloads (July, 2022): 100

Daily downloads (Feb, 2024) :  20, 000

Total downloads:  18, 000, 000+

[Parmar et al., CVPR 2022]

Clean-fid libraries for evaluating generative models
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